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Abstract
By using the non-equilibrium Green function method, we give the current
flowing in a chain of quantum dots exactly. The result coincides with the
Landauer formula. Finally, the conductance of the system is given in the linear
approximation.

PACS number: 7361

1. Introduction

The quantum feature of the conductance in microscopic electronics is currently a major
theoretical and experimental research topic in condensed matter physics [1]. With technique
development, devices on a smaller and smaller scale are needed, in which the quantum effects
will become a problem. One subject is to study the properties of the electronic transport
in the quantum dot, which has many interesting phenomena, such as the Coulomb blockade,
resonant tunnelling [2] and the Kondo effect [3–5]. The experimental device is constructed by a
nanoparticle coupled to two leads generally. These leads may be metal or superconductor [6,7]
and the nanoparticle is usually treated as a quantum dot. In past papers, as we know, one simple
quantum dot [8] or double quantum dot [9,10] is considered, in which there may be one energy
level or two energy levels. These give nonlinear current through this system.

In this paper we study a single-tunnelling-channel model in which N quantum dots
interacting with each other construct a one-dimensional chain between two mental leads. Due
to this interaction in the system, we could not have the aid of the conventional Laudauer theory
to give the transport current. Lending to the non-equilibrium Green method and the Languish
theory [11], we derive the current and the conductance in the quantum chain. It is seen that
the result of the current coincides with the Landauer formula in the non-interacting case [12].

The paper is arranged as follows. In section 2, the Hamiltonian for a chain of quantum
dots is given. By choosing a suitable rotational transformation, this chain can be transferred to
a series of parallel quasi-particles, which connect with the reservoirs isolatively. In section 3,
a general current flowing in the lead is given. The static current and the conductance are get
in section 4. Finally, we give a conclusion in section 5.
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Figure 1. The chain of quantum dots. Figure 2. The chain of quantum dots after the rotational
transformation.

2. Hamiltonian for a chain of quantum dots

Neglecting the electronic spin component and the Coulomb interaction of the dot, i.e. the
four-fermion interacting terms in the Hubbard model have been omitted, the Hamiltonian of
the system is written as

H =
∑
α=L,R

Hα +Hd +
∑
α=L,R

HTα (1)

where

Hα =
∑
k∈α
εkC

+
k Ck α = L,R

Hd =
n∑
i=1

Wid
+
i di +

n−1∑
i=1

[Vid
+
i di+1 + h.c.]

HTL =
∑
k∈L

[V Lk C
+
k d1 + h.c.] HTR =

∑
k∈R

[V Rk C
+
k dn + h.c.]

(2)

whereC+
k (Ck) and d+

I (dI ) are the creation and annihilation operators for the lead and quantum
dots. Hα and Hd are the Hamiltonians for the two reservoirs and the chain of the quantum
dots respectively. HTα(α = L,R) describes the interaction between the two leads with the
dots at the two end of the chain, by which the current can flow in the system. V αk are the
coupling constants, which may generally depend on time. The physics of this device is shown
in figure 1. In order to give the transport current, a rotational transformation di = ∑n

j=1 Tij aj
is needed, in which we have introduced n new fermionic operators aj to express the quasi-
particles (quasi-dots). By choosing a proper transformation, the Hamiltonian Hd becomes
diagonal, that is

H ′
d =

n∑
i=1

Eia
+
i ai . (3)

In the meantime, the interacting Hamiltonian HTα becomes

H ′
T α =

n∑
k∈α,i=1

[UαkiC
+
k ai + h.c.] (4)

where the coupling constants become ULki = V Lk T1i and URki = V Rk Tni . The Hamiltonians
for the two reservoirs maintain their initial forms under the unitary transformation. The
Hamiltonian describing the system is then

H =
∑
α=L,R

Hα +H ′
d +

∑
α=L,R

H ′
T α. (5)
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It is seen from equation (4) that each quasi-particle described by operator ai interacts with
the two leads isolatively. This is similar to one multi-level quantum dot system acting on the
two reservoirs. The physical scheme becomes figure 2 for the quasi-dots. It must be noted
that the commutation relation maintains its initial form [ai, a+

j ]+ = δij . It seems that there is
no coupling between these quasi-particles, which is not in fact true. The coupling between the
quasi-particle and the reservoir results indirectly in coupling among the quasi-particles, so the
current flowing through this system is not equal to the sum of the currents flowing in every
quasi-particle. It is determined in the following way.

The current in the system is calculated by the time derivation of the number operator
Nα = ∑

k∈α C
+
k Ck (α = L,R). Lending to the Heisenberg equation, we first give the current

which follows in the left-hand lead:

JL = e
〈

dNL
dt

〉
= ie

h̄
〈[H,NL]〉

= e

h̄

n∑
k∈L,j=1

[ULkjG
<
jk(t, t)− UL∗

kj G
<
kj (t, t)] (6)

where we have defined the Green functions G<jk(t, t
′) = i〈C+

k (t
′)aj (t)〉 and G<kj (t, t

′) =
i〈a+

j (t
′)Ck(t)〉. By using the property G<∗

kj (t, t) = −G<jk(t, t), the current is written as

JL = 2e

h̄
Re

n∑
k∈L,j=1

ULkjG
<
jk(t, t). (7)

As the same process, the current flowing in the right-hand lead is derived from the right-
hand lead’s number operator

JR = 2e

h̄
Re

n∑
k∈R,j=1

URkjG
<
jk(t, t). (8)

In the static condition, the current is continuous, i.e. JL = −JR . So the current through
the system can be expressed as

J = 1
2 (JL − JR)

= e

h̄
Re

[ n∑
k∈L,j=1

ULkjG
<
jk(t, t)−

n∑
k∈R,j=1

URkjG
<
jk(t, t)

]
. (9)

3. The current in the non-static case

Equation (9) shows that the Green functionG<jk(t, t
′) plays an important part in the calculation

of the current. Our next aim is to give its expression. For simplicity, we select h̄ = 1
in the following. First we define the Green function for the left-hand lead as Gjk(t, t ′) =
−i〈T aj (t)C+

k (t
′)〉, where k ∈ L (it should be noted that if k ∈ R, then Gjk(t, t ′) gives the

function for the right-hand lead). By lending to the Heisenberg equation, Gjk(t, t ′) satisfies
the following kinetic equation:(

i
∂

∂t ′
+ εk

)
Gjk(t, t

′) = −
n∑
m=1

UL∗
kmGjm(t, t

′) (10)

where we have defined the Green function Gjm(t, t ′) = −i〈T aj (t)a+
m(t

′)〉 for the chain.
This function links only with the operator of the quantum dots. In order to solve the
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above equation, we need further to define the Green function for the uncoupled lead as
gk(t, t

′) = −i〈T Ck(t)C+
k (t

′)〉. As the same process, we have(
i
∂

∂t ′
+ εk

)
gk(t, t

′) = −δ(t − t ′). (11)

In other respects, the Green functions for the uncoupled lead are calculated
straightforwardly; they are

g<k (t, t
′) = i〈C+

k (t
′)Ck(t)〉 = if (εk) exp

[
i
∫ t

t ′
dt ′′ εk(t ′′)

]

g+
k (t, t

′) = −i〈Ck(t)C+
k (t

′)〉 = −i(1 − f (εk)) exp

[
i
∫ t

t ′
dt ′′ εk(t ′′)

]

g
r,a
k (t, t

′) = ∓iθ(±t ∓ t ′)〈[C+
k (t), Ck(t

′)]+〉 = ∓iθ(±t ∓ t ′) exp

[
i
∫ t

t ′
dt ′′ εk(t ′′)

] (12)

where f (εk) (k ∈ α) is the particle distribution function of the αth reservoir. Leading to
equation (11), the solution of equation (10) is

Gjk(t, t
′) =

∫
dt1

n∑
m=1

UL∗
kmGjm(t, t1)gk(t1 − t ′). (13)

It is easy to write the Green function Gkj (t, t ′) = −i〈T Cj (t)a+
j (t

′)〉

Gkj (t, t
′) =

∫
dt1

n∑
m=1

gk(t − t1)ULkmGmj (t1, t ′). (14)

In order to give a series of Green functions, we need to obtain the expression of the Green
function in the time course by referring to equation (14)

Gjk(τ, τ
′) =

∫
dτ1

n∑
m=1

UL∗
kmGjm(τ, τ1)gk(τ1 − τ ′) (15)

where the τ1-integral is over the time loop. By using the Langreth operator rule [13], we have

G<jk(t, t
′) =

n∑
m=1

∫
dt1 U

L∗
km [Grjm(t, t1)g

<
k (t1 − t ′) +G<jm(t, t1)g

a
k (t1−t ′)]

Grjk(t, t
′) =

n∑
m=1

∫
dt1 U

L∗
kmG

r
jm(t, t1)g

r
k(t1 − t ′).

(16)

Due to the uncoupling Green function g〈,〉,r,a
k being known, our next destination is to

determine the Green function Gjm(t, t ′) = −i〈T aj (t)a+
m(t

′)〉 in order to give the concrete
expression Gjk(t, t ′). Taking equation (10), we have(

i
∂

∂t
− Ej

)
Gjm(t, t

′) = δ(t − t ′)δjm +
∑

k∈α,α=L,R
Uα∗kj Gkm(t, t

′). (17)

In other respects, the Green functions for the uncoupling quantum dots are gjm(t, t ′) =
−i〈T aj (t)a+

m(t
′)〉, which satisfy the following kinetic equations:(

i
∂

∂t
− Ej

)
gjm(t, t

′) = δ(t − t ′)δjm, (18)

but the concrete result for the uncoupling Green functions gjm(t, t ′) can be calculated
straightforwardly; these are

gr.ajm(t, t
′) = ∓iθ(±t ∓ t ′)〈[a+

j (t), am(t
′)]+〉 = ∓iθ(±t ∓ t ′) exp

[
i
∫ t

t ′
dt ′′ Ej(t ′′)

]
. (19)
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Using equation (18), equation (17) has the form

Gjm(t, t
′) = gjm(t − t ′) +

∑
p=1;k∈α;α=L,M

∫
dt1 gjp(t − t1)Uα∗kp Gkm(t1, t ′) (20)

which shows that although these quasi-dots after transformation are decoupled, there is still
correlation through the reservoirs. Combining equation (14) with (20), we have

Gjm(t, t
′) = gjm(t − t ′) +

n∑
p=1;q=1

∫
dt1 dt2 gjp(t − t1)

∑
p,q

(t1, t2)Gqm(t2, t
′) (21)

where
∑r,a,〈,〉

p,q (t1, t2) = ∑
k∈α;α=L,R U

α∗
kp g

r,a,〈,〉
k (t1, t2)U

α
kq is the self-energy. This shows that

the function
∑r,a,〈,〉

pq (t1, t2) is known due to Uα∗kp and gr,a,〈,〉k having been given. So the current
is calculated with equations (9), (16) and (21), but (21) is a reiterating equation. By now
the current of the time-dependent system can be obtained, if we combine equations (9), (13)
with (21).

4. The current in the static case

Our next aim is to discuss the time-independent coupling system in the spectral representation,
i.e. εk, Ej andWi, Vj in equation (2) do not depend on time. Due to the time being translation
invariant, these uncoupling Green functions of the system are time difference (t− t ′) functions

g<k (t − t ′) = if (εk) exp[iεk(t − t ′)]
g+
k (t − t ′) = −i(1 − f (εk)) exp[iεk(t − t ′)]
g
r,a
k (t − t ′) = ∓iθ(±t ∓ t ′) exp[iεk(t − t ′)]

(22)

and

gr.ajm(t − t ′) = ∓iθ(±t ∓ t ′) exp[iEj(t − t ′)].
The corresponding spectral functions for the uncoupling Green functions, then, are

g<k (ω) = i2πf (ε)δ(ω − εk)
g>k (ω) = −i2π(1 − f (ε))δ(ω − εk)
g
r,a
k (ω) = 1

ω − εk ∓ iδ

g
r,a
jm(ω) = δjm

ω − Ej ∓ iδ
.

(23)

It is seen from equations (23) that due to the translation invariance of the uncoupling
Green function, the Green functionGjm(t, t ′) is also translation invariant, i.e. it can be written
as Gjm(t − t ′). Moreover, the function

∑r,a,〈,〉
pq (t1, t2) has the same property. So the spectral

representation of the self-energy function
∑<

pq(t1 − t2) is
<∑
pq

(ω) = i2π
∑

k∈α,α=L,R
fα(εk)U

α∗
kp U

α
kqδ(ω − εk)

= i2π
∑
α=L,R

fα(ω)U
α∗
p (ω)U

α
q (ω)ρα(ω) (24)

where ρα(ω) is the state density of the leads and we have denotedUαkp = Uαp (ω)when ω = εk .
Here the electron distribution functions in the two reservoirs have been clearly written as fα(ω).
Defining -αpq(ω) = 2πρα(ω)Uα∗p (ω)U

α
q (ω), then we have

<∑
pq

(ω) = i[-Lpq(ω)fL(ω) + -Rpq(ω)fR(ω)]. (25)
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Similarly the retard and advance self-energy functions
∑r,a
pq (ω) are

r,a∑
pq

(ω) = .pq(ω)± i

2
-pq(ω) (26)

with .pq(ω) = ∑
α=L,R .

α
pq(ω), -pq(ω) = ∑

α=L,R -
α
pq(ω) and

.αpq(ω) =
∫

dε ρ(ε)Uα∗p (ε)U
α
q (ε)P

(
1

ω

)
.

From equation (23), the Green function in the spectral representation is

Gjm(ω) = gjm(ω) +
n∑

pq=1

gjp(ω)
∑
pq

(ω)Gqm(ω) (27)

or it can be simply written as

G−1
jm(ω) = g−1

jm(ω)−
∑
pq

(ω). (28)

In other respects, using Langreth theory, the retard and advance Green functions Gr,ajm(ω)
can be expressed as

G
r,a
jm(ω) = gr,ajm(ω) +

n∑
pq=1

g
r,a
jp (ω)

r,a∑
pq

(ω)Gr,aqm(ω). (29)

It is necessary for us to give another expression for the retard and advance Green functions

G
r,a
jm(ω) =

[
g
r,a−1
jm (ω)−

r,a∑
pq

(ω)

]−1

= 1

(ω − Ej)δjm −.jm(ω)± i
2-jm(ω)

. (30)

Now, we only give the spectral representation ofGjm(ω). According to the Langreth rule,
we can derive other Green functions by using the above equation:

G<jm(ω) =
n∑

pq=1

Grjp(ω)

<∑
pq

(ω)Gaqm(ω). (31)

Combining equations (16) and (30), the spectral representation of the Green function
G<jk(ω) is

G<jk(ω) =
n∑
m=1

Uα∗km[Grjm(ω)g
<
k (ω) +G<jm(ω)g

a
k (ω)]. (32)

Inserting the spectral representation of the uncoupling Green function equation (23) into (32),
we have

G<jk(ω) =
∑
m

UL∗
km

[
i2πfL(εk)δ(ω)G

r
jm(ω) +

1

ω − εk − iδ
G<jm(ω)

]
. (33)

Now many necessary mathematical results have been given. The next destination is to
express the current in the spectral form. Considering the translation invariance of the system,
equation (6) can be expressed as in the spectral representation

JL = e

h̄

n∑
j=1

1

2π

∫
ω[ULj (ω)G

<
jk(ω)− UL∗

j (ω)G
<
kj (ω)]. (34)
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Lending to equations (33) and (34), the current in the left-hand lead can be written as

JL = e

h̄

n∑
m,j=1

1

2π

∫
dωUL∗

j (ω)U
L∗
m (ω)[gk(ω)(G

r
jm(ω)−Gajm(ω))

+(g<k (ω)− g>k (ω))G<jm(ω)]. (35)

By using the concrete expression of the uncoupling Green function gk(ω), the current
flowing in the left-hand lead is

JL = ie

2πh̄

n∑
m,j=1

∫
dε -Ljm(ε)[fL(ε)(G

r
jm(ε)−Gajm(ε)) +G<jm(ε)]. (36)

Similarly the current flowing in the right-hand lead is

JR = ie

2πh̄

n∑
m,j=1

∫
dε -Rjm(ε)[fR(ε)(G

r
jm(ε)−Gajm(ε)) +G<jm(ε)]. (37)

It is necessary for us to give the concrete form of the function Grjm(ε) −Gajm(ε). From
equation (30), we have

Grjm(ε)−Gajm(ε) = −i.jm(ω)

[(ω − Ej)δjm − -jm(ω)]2 + 1
4-

2
jm(ω)

. (38)

Combining equation (9) with (36) and (37), the current flowing through the system is
written as in the spectral expression

J = ie

4πh̄

n∑
m,j=1

∫
dε{[-Ljm(ε)fL(ε)− -Rjm(ε)fR(ε)](Grjm(ε)−Gajm(ε))

+[-Ljm(ε)− -Rjm(ε)]G<jm(ε)]}. (39)

Another expression of the current is derived in the following way. From equations (25)
and (31), we obtain

G<jm(ω) =
∑
α=L,R

n∑
p,q=1

fα(ω)G
r
jp(ω)-

α
pq(ω)G

a
qm(ω). (40)

Equation (29) can be expressed in the other formGrjm
−1(ω) = grjm−1(ω)− ∑r

mj (ω), and

Gajm
−1(ω) = gajm−1(ω)− ∑a

mj (ω), so we have

Grjm
−1
(ω)−Gajm−1

(ω) =
a∑
jm

(ω)−
r∑
jm

(ω). (41)

Finally, the current is written as by using equation (26)

J = e

4πh̄

n∑
m,j,p,q=1

∫
dε (fL(ε)− fR(ε))[-Ljm(ε)Grjp(ε)-Rpq(ε)Gaqm(ε)

+-Rjm(ε)G
r
jp(ε)-

L
pq(ε)G

a
qm(ε)]. (42)

If the coupling coefficients between the leads and the two quantum dots at the end of the
chain are equal, we have -Ljm = -Rjm and the current then becomes

J = e

h

∫
dε (fL(ε)− fR(ε))I(ε) (43)

where I(ε) = ∑n
m,j,p,q=1 -

L
jm(ε)G

r
jp(ε)-

R
pq(ε)G

a
qm(ε). Equation (43) coincides with the

Laudauer formula in the non-interacting case [12]. If there are two quantum dots instead of
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the N dots, equation (43) coincides with [14], except that we do not consider the effect of the
electronic spin. Defining the conductance difference λn = 〈In〉

1V
, we have in the linear response

λn = −e
2

h

∫ ∞

− µ

KT

dx I
′(x)

df (x)

dx

with x = (ε − µ)/KT and I
′(x) = I(ε). It is seen that this expression of the conductance

has the same form as that derived from the Landauer theory, in which I(ε) corresponds to
the transmission coefficient. It should be noted that the Laudauer theory is suitable for non-
interaction between the particles, so the transmission coefficient in the Laudauer formula is
determined only by the boundary condition between the reservoirs and the transport wire, but
in our case, due to the interaction having been considered, the transmission coefficient depends
not only on the boundary of the system but also on the interaction between the particles.

5. Conclusion

We derive the current in the chain of the quantum dots in the static case. Due to the four-
fermion interactive terms in the Hubbard model having been neglected, the chain can be
decoupled to a series of isolated quasi-dots arranged in a parallel form, which couple with the
reservoirs. Because the system is in non-equilibrium, we adopt the non-equilibrium Green
function technique to calculate the current. It is seen that the results of the current and the
conductance coincide with the Laudauer formula in form, but the transmission coefficient in
our case depends on the interaction between the particles. If the spin index is included (where
the spin does not take part in the interaction and it only contributes to the number of the
transport channel), the current and the conductance are double our above results.
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